

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 3679-3680

Time-Dependence and Preliminary SAR Studies in Inhibition of Nitric Oxide Synthase Isoforms by Homologues of Thiocitrulline

Claire L. M. Goodyer,^a Edwin C. Chinje,^b Mohammed Jaffar,^b Ian J. Stratford^b and Michael D. Threadgill^{a,*}

^aDepartment of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK ^bSchool of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Received 20 May 2003; revised 1 August 2003; accepted 11 August 2003

Abstract—Treatment of N^{∞} -Cbz- N^{ε} -(2-hydroxyethylaminothiocarbonyl)-L-lysine N-(2-hydroxyethyl)amide with boiling hydrochloric acid gave N^{ε} -(4,5-dihydrothiazol-2-yl)-L-lysine. This was a weak and non-isoform selective inhibitor of NOS, whereas N^{ε} -aminothiocarbonyl-L-lysine and its methyl ester were potent, with IC₅₀ = 13 and 18 μ M, respectively, against human iNOS and IC₅₀ = 3 and 8 μ M, respectively, against rat nNOS. Time dependence was observed for inhibition of nNOS by the ester. © 2003 Elsevier Ltd. All rights reserved.

Nitric oxide (NO·) is biosynthesised from L-arginine in two steps catalysed by nitric oxide synthases (NOSs). There are three isoforms, endothelial NOS (eNOS) and neuronal NOS (nNOS) (constitutive Ca²⁺-dependent forms) and an inducible form (iNOS). Selective inhibition of each of these has potential applications in therapy several diseases, including cancer. 1-3 Early NOS inhibitors included the arginine analogues N^{ω} -monomethyl-L-arginine (L-NMMA), N^{δ} -(iminoethyl)-L-ornithine (L-NIO), N^{ω} -nitro-L-arginine (L-NNA) and its methyl ester (L-NAME). These bind to the guanidinium region of the arginine-binding site⁴ and are competitive reversible inhibitors, which show potency but little isoform selectivity.⁵ We reported³ that N^{δ} -(4,5-dihydrothiazol-2-yl)-L-ornithine 2 was a potent inhibitor of rat iNOS and rat nNOS. This is a close analogue of the known inhibitor L-thiocitrulline 1, which is also relatively non-isoform-selective (Fig. 1).¹

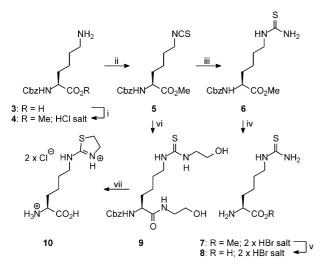

Scheme 1 shows the syntheses of the target lysine derivatives. CbzLysOMe 4 was converted to isothiocyanate 5 with thiophosgene. Addition of ammonia then gave the thiourea 6 in high yield. Debenzylation (HBr/AcOH) removed the Cbz to give compound 7.6 The ester was hydrolysed with aqueous hydrobromic acid, yielding ε-aminothiocarbonyl-L-lysine 8.7 This sequence

Figure 1. Structures of NOS inhibitors L-thiocitrulline 1 and N^{δ} -(4,5-dihydrothiazol-2-yl)-L-lysine **2**.

gave both **8** and its ester **7** for evaluation, by analogy with L-NNA and L-NAME. Reaction of **5** with 2-aminoethanol in boiling acetone not only formed the required N'-(2-hydroxyethyl)thiourea but also displaced the ester OMe group, giving **9**. Boiling with hydrochloric acid not only effected cyclisation to the 4,5-dihydrothiazole but also hydrolysed the α -amide and Cbz protection, giving N^{ϵ} -(4,5-dihydrothiazol-2-yl)-L-lysine **10**.8

Compounds **7**, **8** and **10** were evaluated for inhibition of rat brain nNOS and of human iNOS (hiNOS). LNMMA (an amino-acid inhibitor) and 7-nitroindazole (7-NI; a non-amino acid inhibitor) were used for comparison. The assay used the conversion of L-[U- 14 C]-arginine to L-[U- 14 C]-citrulline. Compounds were initially evaluated at 100 μ M. Incubation of the inhibitors with the enzyme for various periods before addition of L-[U- 14 C]-Arg to start the reaction revealed that the inhibition of nNOS by **7** increased markedly

^{*}Corresponding author. Tel.: +44-1225-386840; Fax: +44-1225-386114; e-mail: m.d.threadgill@bath.ac.uk

Scheme 1. Synthesis of lysine-derived thioureas 7, 8 and 4,5-dihydrothiazole 10. Reagents and conditions: (i) MeOH, SOCl₂, 4 days, 65%; (ii) CSCl₂, CaCO₃, H_2O , CHCl₃, 16 h, 52%; (iii) NH₃, CH₂Cl₂, 4 h, 59%; (iv) HBr, HOAc, 15 h, 100%; (v) aq HBr (48%), 16 h, 100%; (vi) $H_2N(CH_2)_2OH$, acetone, reflux, 4 h, 53%; (viii) aq HCl (6 M), reflux, 36 h, 76%.

Table 1. Time-dependence of inhibition of NOS isoform activity by known inhibitors L-NMMA, 7-nitroindazole (7NI) and by **7**, **8**

Compd	Isoform		Percentage inhibition ^a of NOS activity by compounds (100 μM) with pre-incubation (t min) ^b				
		t = 0	t = 5	t = 10	t = 15	t = 20	
L-NMMA 7-NI	nNOS nNOS hiNOS	94±1 59±1 77±2	99±2 61±5	96±1 74±3 68±2	98±1 75±1 58±2	97±2 74±1 56±2	
7 8	nNOS ^c hiNOS ^d nNOS ^c	14 ± 1 77 ± 5 97 ± 4	83 ± 11 79 ± 1 97 ± 3	90 ± 2 67 ± 1 98 ± 5	86 ± 1 73 ± 2 97 ± 1	85 ± 1 70 ± 3 97 ± 1	
	hiNOS ^d	97 ± 2	97 ± 1	97 ± 3	97 ± 2	97 ± 3	

^aValues are means of three experiments ± standard deviation.

Table 2. IC₅₀ values for inhibition of NOS isoforms $(\mu M)^a$

Compd	iNOS ^b	hiNOS°	nNOS ^d
1		< 5	17
2	8.1 ^e		1.3
7		13	3
8		18	8
10		> 100	> 100

 $^{^{\}rm a}{\rm IC}_{50}$ values were measured using a 15-min pre-incubation of the inhibitor with the enzyme.

with increasing pre-incubation time (Table 1) but this effect was not shown for hiNOS. No time-dependence was seen for inhibition of either isoform by the amino-acids L-NMMA or 8. Owing to the potential

for time-dependence, IC_{50} values were determined for 7, 8 and 10 against both isoforms with 15-min pre-incubation (Table 2).

None of the compounds shows useful isoform selectivity. The potency of 1 is retained in the higher homologue 7 but insertion of an additional CH2 into the linker between the amino-acid and the dihydrothiazole decreased potency markedly (10 vs 2). 1400 W (N-3-aminomethylbenzyl)acetamidine) is a slowbinding inhibitor of rat iNOS, taking 10 min of preincubation with the enzyme to exert full inhibition.¹² However, slow binding to nNOS has not been reported; homothiocitrulline ester 7 is the first compound for which this has been observed. The ¹H NMR spectrum of a solution of 7 in D₂O was unchanged after 40 min; thus, ester hydrolysis is highly unlikely under the conditions of the enzyme inhibition assay. Such slow binding may reflect the need for 7 to adjust its conformation during the binding process; the origin of this effect will be the subject of future study.

Acknowledgements

We thank AICR for financial support.

References and Notes

- 1. Marletta, M. A. J. Med. Chem. 1994, 37, 1899.
- 2. Schmidt, H. H. H. W.; Walter, U. Cell 1994, 78, 919.
- 3. Ulhaq, S.; Chinje, E. C.; Naylor, M. A.; Jaffar, M.; Stratford, I. J.; Threadgill, M. D. *Bioorg. Med. Chem.* **1999**, 7, 1787.
- 4. Moore, W. M.; Webber, R. K.; Jerome, G. M.; Tjoeng, F. S.; Misko, T. P.; Currie, M. G. J. Med. Chem. 1994, 37, 3886.
- 5. Ogden, J. E.; Moore, P. K. Trends Biotech. 1995, 13, 70.
- 6. Data for 7: IR v_{max} 1240, 1742, 3030 cm⁻¹; NMR ((CD₃)₂SO) δ_H 1.43–1.90 (6H, m, β , γ , δ -H₆), 3.67 (3H, s, CH₃), 3.29 (2H, t, J=7.8 Hz, Lys ϵ -H₂), 4.01 (1H, m, α -H), 7.52 (1H, br NH), 8.34 (1H, s, NH); MS m/z 220.1119 (M+H) (C₈H₁₈N₃O₂S requires 220.1120).
- 7. Data for **8**: IR v_{max} 1194, 1739, 3429 cm⁻¹; NMR (CDCl₃) $\delta_{\rm H}$ 1.5–2.0 (6H, m, β, γ, δ -H₆), 2.96 (2H, t, J=7.8 Hz, ϵ -H₂), 4.01 (1H, t, J=6.6 Hz, α -H); NMR (CD₃OD) $\delta_{\rm C}$ 22.3, 27.4, 30.1, 43.9, 52.7, 128.8, 170.4; MS m/z 206.0956 (M+H) (C₇H₁₆N₃O₂S requires 206.0963).
- 8. Data for **10**: IR v_{max} 1651, 1750, 3413 cm⁻¹; NMR ((CD₃)₂SO) δ_H 1.44 (6H, m, β , γ , δ -H₆), 2.80 (2H, m, ϵ -H₂), 3.35 (2H, m, thiazole 5-H₂), 3.49 (1H, m, α -H), 3.58 (2H, m, thiazole 4-H₂), 8.10 (3H, br, N⁺H₃) 8.50 (2H, br, 2×NH); NMR ((CD₃)₂SO) δ_C 21.6, 29.5, 30.9, 38.6, 44.8, 51.8, 57.6, 169.6, 171.0; MS m/z 232.1115 (M+H) (C₉H₁₈N₃O₂S requires 232.1120).
- 9. Goodyer, C. L. M.; Chinje, E. C.; Jaffar, M.; Stratford, I. J.; Threadgill, M. D. *Bioorg. Med. Chem.* **2003**, *11*, 4189.
- 10. Wolff, D. J.; Gribbin, B. J. Arch. Biochem. Biophys. 1994, 311, 300.
- 11. Ulhaq, S.; Chinje, E. C.; Naylor, M. A.; Jaffar, M.; Stratford, I. J.; Threadgill, M. D. *Bioorg. Med. Chem.* **1998**, *6*, 2139.
- 12. Garvey, E. P.; Oplinger, J. A.; Furfine, E. S.; Kiff, R. J.; Laszlo, F.; Whittle, B. J. R.; Knowles, R. G. *J. Biol. Chem.* **1997**, *272*, 4959.

^bPre-incubation of the inhibitor with the enzyme preparation, prior to initiating NOS activity by addition of L-[1⁴C]-arginine.

cRat brain nNOS

dRecombinant human iNOS.

bRat iNOS.

^cRecombinant human iNOS.

dRat brain nNOS.

^eData taken from ref 2. IC₅₀ measured without pre-incubation.